

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

 $Siddharth\ Nagar,\ Narayanavanam\ Road-517583$

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Compiler Design (19CS0515) Year &Sem: III-B.Tech & I-Sem Course & Branch: B.Tech - CSE

Regulation: R19

UNIT –I INTRODUCTION AND LEXICAL ANALYSIS

1	a	Define Compiler.	[L1][CO1]	[2M]
	b	Explain parts of compiler with neat diagram.	[L2][CO2]	[10M]
2	a	Differences between compiler and Interpreter.	[L4][CO1]	[6M]
	b	Describe about Language Processor in compiler Design?	[L2][CO1]	[6M]
3		Explain the phases of a compiler with neat diagram?	[L2][CO2]	[12M]
4	a	Write in detail about the Structure of Compiler?	[L3][CO1]	[6M]
	b	Analyzethe need for separating lexical analysis and syntax analysis	[L4][CO2]	[6M]
5		Discuss the following terms	[L2][CO1]	[12M]
		a) Specification of Tokens		
		b) Recognition of Tokens		
6	a	Explain in detail about the role of lexical analyzer in Compiler Design.	[L3][CO1]	[6M]
	b	Write about input buffering?	[L3][CO1]	[6M]
7	a	DescribeBootstrapping	[L2][CO1]	[6M]
	b	SummarizeCompiler construction Tools	[L5][CO3]	[6M]
8		Design the compiler by using the source program	[L6][CO3]	[12M]
		position:=intial+rate*60.		
9	a	Differentiate tokens, patterns, and lexeme.	[L4][CO1]	[6M]
	b	List the various error recovery strategies for a lexical analysis.	[L1][CO1]	[6M]
10	a	Illustrate Application of compiler technology	[L3][CO1]	[4M]
	b	Explain LEX Tool with the structure of Lex Program?	[L2][CO3]	[8M]

UNIT –II SYNTAX ANALYSIS AND TOP DOWN PARSING

1	a	Compare left most and right most derivations?	[L4][CO1]	[6M]
	b	Interpret how to eliminate ambiguity for the given Ambiguous	[L2][CO1]	[6M]
		Grammar.		
2	a	Explain the role of parser.	[L2][CO1]	[2M]
	b	Design the recursive decent parser for the following grammar?	[L6][CO3]	[10M]
		E→ E+T/T		
		T→T*F/F		
		F → (E)/id		
3		Consider the grammar	[L6][CO3]	[12M]
		S→AB ABad		
		A→d		
		E →b		
		D → b ε		
		B→c		
		Construct the predictive parse table and check whether the given		
		grammar is LL(1) ornot.		
4		Consider the grammar $E \rightarrow TE^1$	[L3][CO2]	[12M]
		$E^1 \rightarrow +TE^1 -TE^1 \varepsilon$		
		$T \rightarrow FT^1$		
		$T^1 \rightarrow *FT^1 \mid /FT^1 \mid \varepsilon$		
		F→(E)/ id		
		Calculate FIRST and FOLLOW for the above grammar		
		Construct the predictive parse table and check whether the given		
		grammar is LL(1) ornot.	FT 13FGO 13	503.53
5	a	Define Ambiguous grammar?	[L1][CO1]	[2M]
	b	Construct Leftmost and Rightmost derivation and parse tree for	[L6][CO2]	[10M]
		the string 3*2+5 from the given grammar. Also check it is		
		ambiguity. Set of alphabets $\Sigma = \{0,, 9, +, *, (,)\}$		
		E → I		
		E →E + E		
		$E \to E * E$		
		$ E \rightarrow (E) $ $ I \rightarrow \varepsilon 0 1 9$		
6		' ' '	[I 1][CO1]	[
U	a	Describe the procedure of eliminating Left recursion.	[L1][CO1]	[6M]
	b	Eliminate left recursion for the following grammar E-E+T/T	[L3][CO1]	[6M]
		$T \rightarrow T*F/F$		
		F→(E)/id		
7	a	Define Context Free Grammar.	[L1][CO1]	[3M]
'	b	Show what do you understand by Left factoring.Perform left	[L1][CO1]	[9M]
	ש	factor for the grammar A \rightarrow abB/aB/cdg/cdeB/cdfB	[L2][CO1]	[71/1]
8		Consider the grammar $E \rightarrow E + T/T, T \rightarrow T *F/F, F \rightarrow (E) id$	[L6][CO3]	[12M]
		Construct predictive parsing table and check given grammar is		[14171]
		LL(1) or not?		
9	a	List the types of Parsers available in compiler Design.	[L1][CO2]	[4M]
	b	Explain Error recovery in predictive Parsing.	[L3][CO2]	[8M]
10		Illustrate the rules to be followed in the finding the FIRST and	[L2][CO1]	
10	a	FOLLOW.	[L2][CU1]	[6M]
	h	Calculate FIRST and FOLLOW for the following grammar?	[I 3][CO3]	[6] /[]
	b	Calculate FIRST and FOLLOW for the following grammar? $E \rightarrow E + T/T$	[L3][CO2]	[6M]
		$T \rightarrow T^*F/F$		
		$F \rightarrow (E)/id$		
	<u> </u>	I /(L)/IU		

UNIT –III BOTTOM UP PARSING AND SEMANTIC ANALYSIS

1	a	Describe what is bottom up parsing?	[L1][CO2]	[3M]
	b	Differences between SLR,CLR, LALR parsers?	[L4][CO2]	[9M]
2		Construct CLR Parsing table for the given grammar	[L6][CO3]	[12M]
		S→CC		
		C→aC/d		
3	a	Write about handle pruning?	[L3][CO1]	[4M]
	b	Summarizeabout SLR parsing?	[L5][CO1]	[8M]
4		Perform Shift Reduce Parsing for the input string using the grammar	[L6][CO3]	[12M]
		$S \rightarrow (L) a$		
		L→L,S S		
		a)(a,(a,a))		
		b)(a,a)		
5	a	Explain syntax directed definition with simple examples?	[L2][CO2]	[6M]
	b	Describe in detail the Translation scheme of SDD.	[L2][CO2]	[6M]
6	a	Define a syntax-directed translation.	[L1][CO2]	[6M]
	b	Summarise the evaluation order of SDT with an example.	[L5][CO2]	[6M]
7		Discuss Type Checking with suitable examples?	[L2][CO4]	[12M]
8	a	Define augmented grammar?	[L1][CO2]	[2M]
	b	Construct the LR(0) items for the following Grammar?	[L6][CO3]	[10M]
		S→L=R		
		S→R		
		L → *R		
		L → id		
		R→L		
9		Construct the LALR parser for the following Grammar?	[L6][CO3]	[12M]
		$S \rightarrow AA$		
		$A \rightarrow aA/b$		
10	a	Explain in detail about YACC tool?	[L2][CO3]	[6M]
	b	Describe Synthesized and Inherited attributes with examples.	[L2][CO3]	[6M]

UNIT –IV RUN TIME ENVIRONMENT AND INTERMEDIATE CODE GENERATION

1	a	Define Activation Record.	[L1][CO5]	[2M]
	b	Sketch the format of Activation Record in stack allocation and explain	[L3][CO5]	[10M]
		each field in it.		
2	a	Discuss about symbol table entries?	[L2][CO4]	[6M]
	b	Write about operations on symbol table?	[L3][CO4]	[6M]
3		Summarise heap management mechanism.	[L5][CO4]	[12M]
4		Describe the Storage Organization with simple examples.	[L2][CO4]	[12M]
5		Define Symbol table. Explain different types of Data structure for symbol	[L1][CO4]	[12M]
		table		
6		Explain Representation of Three Address Codes with suitable Examples	[L2][CO5]	[12M]
7		Produce quadruple, triples and indirect triples for following expression:	[L6][CO5]	[12M]
		(x + y) * (y + z) + (x + y + z)		
8		Analyze Different types of Intermediate code with an Example.	[L4][CO5]	[12M]
9	a	Write properties of memory management	[L3][CO4]	[4M]
	b	Discuss Storage allocation strategies with suitable examples?	[L2][CO4]	[8M]
10	a	Describe scope and life time of variable.	[L2][CO4]	[2M]
	b	Illustrate Control Flow Statements.	[L3][CO4]	[10M]

UNIT –V INTRODUCTION TO APPLICATION LAYER

1		Write about all issues in code generation. Describe it.	[L3][CO5]	[12M]
2	a	Analyze the different forms in target program	[L4][CO6]	[4M]
	b	Explain the target machine architecture?	[L2][CO6]	[8M]
3	a	Discuss the various strategies in register allocation.	[L2][CO4]	[6M]
	b	Describe about loop optimization techniques?	[L2][CO5]	[6M]
4	a	List and explain the Issues in the design of a code generator	[L1][CO6]	[6M]
	b	Define and Show Dead-code elimination with example.	[L3][CO4]	[6M]
5		Interpretabout optimization techniques on Basic Blocks with simple	[L2][CO5]	[12M]
		examples?		
6		Explain the peephole optimization Technique with example?	[L6][CO5]	[12M]
7	a	List the applications of DAG.	[L1][CO6]	[4M]
	b	Construct the DAG for following statement. a+b*c+d+b*c	[L6][CO6]	[8M]
8		Construct the DAG for the following basic blocks	[L6][CO6]	[12M]
		1. t1:=4*i		
		2. $t2:=a[t1]$		
		3. t3:=4*i		
		4. $t4:=b[t3]$		
		5. t5:=t2*t4		
		6. t6:=prod+t5		
		7. prod:=t6		
		8. $t7:=i+1$		
		9. i:=t7		
		if i<=20 goto 1		
9	a	Write about Simple code generator	[L3][CO6]	[6M]
	b	Classify Register allocation and register assignment	[L4][CO6]	[6M]
10	a	Describe about global data flow analysis?	[L2][CO6]	[6M]
	b	Discuss function preserving transformations?	[L2][CO6]	[6M]

Preparedby:
Mrs.R.M.Mallika, Mr.B.Pavan Kumar, Mr.P.Krishnamoorthy